Multi-step Prediction Algorithm of Traffic Flow Chaotic Time Series Based on Volterra Neural Network
نویسندگان
چکیده
The accurate traffic flow time series prediction is the prerequisite for achieving traffic flow inducible system. Aiming at the issue about multi-step prediction traffic flow chaotic time series, the traffic flow Volterra Neural Network (VNN) rapid learning algorithm is proposed. Combing with the chaos theory and the Volterra functional analysis, method of the truncation order and the truncation items is given and the VNN model of traffic flow time series is built. Then the mechanism of the chaotic learning algorithm is described, and the adaptive learning algorithm of VNN for traffic flow time series is designed. Last, a multi-step prediction of traffic flow chaotic time series is researched by traffic flow VNN network model, Volterra prediction filter and the BP neural network based on chaotic algorithm. The simulations show that the VNNTF network model predictive performance is better than the Volterra prediction filter and the BP neural network by the simulation results and rootmean-square value.
منابع مشابه
Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملChaotic Prediction for Traffic Flow of Improved BP Neural Network
Abstract A prediction algorithm for traffic flow prediction of BP neural based on Differential Evolution (DE) is proposed to overcome the problems such as long computing time and easy to fall into local minimum by combing DE and neural network. In the algorithm, DE is used to optimize the thresholds and weights of BP neural network, and the BP neural network is used to search for the optimal so...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 8 شماره
صفحات -
تاریخ انتشار 2013